
Software Diversity
1 concept and 10 papers I Love

Benoit Baudry 

Professor, KTH

1



2

PI O



3

PI O



4

PI O PI O

PI OPI O



5

PI O PI O

PI OPI O



6

PI O PI O

PI OPI O

Risks of monoculture
- No specialization
- Same bugs
- Same vulnerabilities



7

PI O PI O

PI OPI O



8

PI O PI O

PI OPI O

Software diversity
mitigates the risks of 
software monoculture
with diverse behaviors



Software diversity

9

Illustration inspired by G. Berry. « A la chasse aux bugs, la maladie du certain » (8 juin 2011)

SRSLSLRSRLLSSRRLRL



Software diversification

10

SRSLSLRSRLLSSRRLRL



Software diversification

11

SRSLSLRSRLLSSRRLRL

variant



Software diversification

12

SRSLSLRSRLLSSRRLRL

variant



Software diversification

13

SRSLSLRSRLLSSRRLRL

SRSLSLSSRLLSSRRLRL



14

Software diversification 
exploits the extraordinary
resources of runtimes, 
languages and randomness.



A journey into software diversity

15



Precursors

• S. Yau. Design of self-checking software. 1975.

•Brian Randell. System structure for software fault 
tolerance. 1975. 

•A. Avizienis. The N-version approach to fault-tolerant
1985. 

16



Pioneers of automatic diversification

• Fred Cohen, 1993
• Increase the costs of attacks

• Program transformations

• Pioneer: reordering, garbage insertion, function mix

• Stephanie Forrest, 1997
• Biological inspiration

• Avoid unnecessary consistency

• Pioneer : NOP insertion, random memory padding

• Prototype of randomized stack layout

17Fred Cohen. Operating system protection through program evolution. 1993.
Stephanie Forrest, Anil Somayaji, David Ackley. Building Diverse Computer Systems. 1997.



Address space layout randomization

•PaX Linux kernel patch. 2000.
• Separate readable data pages and executable

code pages

• Address space layout randomization: heap, 
stack and libraries

•ASLR is now in all main Oss
• Mitigates ret-to-libc and stack smashing

18https://en.wikipedia.org/wiki/PaX
Shacham, H. and colleagues. On the Effectiveness of Address-Space Randomization. 2004



NOP insertion

•Compiler-based diversification
• Randomly insertr NOPs in the generated binary

• One different binary at each compilation

•Mitigates return oriented programming

19
Homescau and colleagues. Profile-guided Automated Software Diversity. 2013.



• Functionality removal, computation discard

•Mitigate homogeneous performance

Good enough software

20
Rinard. Obtaining and Reasoning About Good Enough Software. 2012.

source code instrumented binary

Compile In memory Execution

Instrumentation

running program

Perforation

for (i = 0; i < n; i++) { … }

for (i = 0; i < n; i += 2) { … }



Mutational robustness

• Source can be randomly transformed with speculative
transformations

• Empirical evidence of software mutational robustness

•Mitigates risks of bug and vulnerability monoculture

21
Schulte and colleagues. Software mutational robustness. 2013.



Moving Target Defenses

•Runtime evolution + diversity

22
Okhravi and colleagues. Finding Focus in the Blur of Moving-Target Techniques. 2014



Conclusion

• The forces of monoculture are strong
• Technical standards (e.g., JSON)

• Socio-technical networks (e.g., Github)

• The penetration of software in society (e.g., Wordpress)

• Extraordinary challenges to fuel software diversity
• Remodel the natural diversity of code strata

• Embrace evolution with DevOps

• Explore the space of short-lived data and programs

23


